

АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ЭКСПЕРТНО-АНАЛИТИЧЕСКИЙ ЦЕНТР ПО ПРОБЛЕМАМ ОКРУЖАЮЩЕЙ СРЕДЫ «ЭКОТЕРРА»

119234, Москва, Ленинские горы, Научный парк МГУ, владение 1, строение 77, офис 401а

Тел./факс: (495) 939-22-84, 939-38-59

E-mail: eco-terra@yandex.ru; http://www.eco-terra.ru

УТВЕРЖДАЮ:
Генеральный директор
АНО "Экотерра", члкорр. РАН
С.А. Шоба

Обоснование экологической безопасности

новой технологии «Получение рекультиванта «Soil+» Для Компании Салым Петролеум Девелопмент Н.В.

Ответственный исполнитель: Ковалева Е.И.

Москва - 2020 г.

СПИСОК ИСПОЛНИТЕЛЕЙ

Начальник отдела управления отходами, к.б.н. Ковалева Е.И.

Зам. нач. отдела управления почвенноземельными ресурсами, к.б.н Гучок М.В.

Введение

Процесс разработки нефтяных месторождений предполагает образование больших количеств отходов бурения, которые, как правило, размещаются в буровых шламовых амбарах. Отходы бурения представлены буровым шламом, пластовыми водами буровыми, тампонажными растворами, буровыми сточными водами.

Для обоснования выбора компонентов и обработок с целью производства Грунта из бурового шлама необходимо определить входящие и выходящие вещества в процессе добычи нефти, образование отходов бурения и способы обращения с ними.

1. Способы добычи (бурение с нефтепродуктами, буровыми растворами)

Способ бурения – это разновидность технологического комплекса работ по проходке ствола скважины, особенность которой определяется спецификой процесса разрушения горной породы, подвода энергии к породообразующему инструменту и удаления шлама. Какой бы не использовался способ бурения, высокая стабильная эффективность работы породоразрушающего инструмента в скважине может быть достигнута только при условии непрерывной и своевременной очистки забоя от шлама горных пород. Циркулирующий по скважине агент подается к забою, омывает его, подхватывает буровой шлам, образующийся на забое при разрушении горной породы, и выносит его на поверхность. Независимо от первоначального состава, выходящий из скважины буровой раствор представляет собой многокомпонентную гетерогенную систему, которая и называется отходами бурения.

Бурового раствора, удовлетворяющего всем требованиям бурения, не существует, что привело к внедрению большого количества различных растворов. Требования к составу и качеству бурового раствора в зависимости от геологических условий и технических особенностей проходки скважины обусловили применение буровых растворов нескольких типов:

Группа 1 — буровые растворы на водной основе (техническая вода, истинные растворы, естественные промывочные жидкости, глинистые буровые растворы, безглинистые буровые растворы, солегели и гидрогели, биополимерные растворы).

Группа 2 — буровые растворы на углеводородной основе (глинистые растворы, инвертные эмульсионные растворы).

Группа 3 – буровые растворы на основе эмульсий.

Группа 4 – буровые растворы на основе аэрированных жидкостей.

Группа 5 – газообразные рабочие агенты (воздух, инертный газ, природный газ, отработанные газы двигателей внутреннего сгорания).

Успешное проведение буровых работ в значительной степени зависит от правильного подбора состава и свойств промывочного агента и соответствия его функций конкретным условиям строительства скважины.

Буровые растворы на водной основе

Из буровых растворов на водной основе широко используют глинистые растворы. Под глинистым раствором понимают коллоидно-суспензионную систему, состоящую из глины, воды и частиц выбуренной породы. Для предотвращения осложнений, связанных с нарушением целостности ствола скважины и возможным газонефтепроявлениями, возникает необходимость повышать плотность глинистого раствора в значительных пределах. Получить такую плотность увеличением концентрации глинистой породы в промывочной жидкости невозможно. Для этого в глинистые растворы вводят реагенты с большой плотностью, получившие название утяжелителей, и таким образом повышают плотность глинистого раствора до требуемых величин. Наилучшим утяжелителем считается барит. Для нужд бурения поставляются технические сорта барита, содержащие различные примеси (кремнезем, известняк, доломит и др.). В отдельных случаях, например, для предотвращения сужения ствола скважины в результате аномально высоких пластовых давлений, возникает потребность использовать утяжелители плотностью более 5300 кг/м. Утяжелители этой группы - галенит (PbS), или свинцовый блеск, феррофосфор, свинцовый сурик (Рb₃О₄), ферросилиций, ферромарганец. (Вадецкий, 2003)

Помимо утяжеления, глинистые растворы насыщают растворами солей для придания им устойчивости к действию солей, попадающих в буровой раствор в процессе разбуривания пластов, насыщенных высокоминерализованными водами. Наиболее простым солестойким раствором является насыщенный раствор или высокоминерализованная вода, содержащая не менее 25% соли. Глинистые растворы, насыщенные солью используют при бурении в том случае, если нельзя применить безглинистые растворы. (Вадецкий, 2003).

Добавки различных ПАВ к буровым растворам позволяют понизить твердость горных пород при бурении; повысить смазочные свойства промывочной жидкости; эмульгировать буровой раствор; аэрировать раствор.

Таким образом, состав отходов бурения во многом зависит от химического состава бурового раствора. Применение глинистых растворов приводит к загрязнению выбуренной породы тяжелыми металлами, минеральными солями, в большей степени хлоридами и сульфатами, ПАВами.

Буровые растворы на углеводородной основе

Для бурения в осложненных условиях, а главным образом для вскрытия продуктивных пластов, применяют промывочные жидкости на неводной основе, в которых дисперсионной средой является не вода, а продукты нефти.

Кроме этого, растворы на нефтяной основе применяют при бурении скважин в условиях высоких положительных и отрицательных (бурение во льдах) забойных температур, а также для проходки соленосных толщ и высокопластичных глинистых пород.

Следует понимать, что при бурении с применением нефтяных растворов, выбуренная порода (буровой шлам) в большей степени загрязняется нефтепродуктами, нежели при бурении с использованием глинистых буровых растворов.

Кроме перечисленных ингредиентов в буровом растворе присутствуют нитроглицерин, карбоксометилцеллюлоза (КМЦ), гидроокись кальция, хромпик, полифенол, углещелочные реагенты, взвеси и другие токсические вещества. Несмотря на многочисленные оценки токсичности бурового раствора с применением биотестов, поведение перечисленных поллютантов в природных средах остается практически неисследованными (Хаустов, Редина, 2006; Ягафарова, Барахнина, 2006).

2. Способы размещения бурового шлама при бурении нефтяных скважин

Бурение скважин в части удаления буровых шламов может быть двух видов: амбарное и безамбарное.

Амбарное бурение

Амбарное бурение предполагает создание буровых шламовых амбаров, в которые поступают отходы бурения скважин. Буровой шламовый амбар организуется в теле кустовой площадки в процессе возведения насыпи. Объем шламового амбара рассчитывается исходя из объема образующихся отходов, который зависит от количества скважин на кустовой площадке, их глубины, принятой технологии бурения и определяется рабочим проектом в соответствии с ведомственными инструкциями, методическими указаниями и методиками расчета, учитывающими региональные особенности, применяемую технику и технологию буровых работ. Откосы стенок амбара выполняются под углом 45°. По периметру амбара создается обваловка из минерального грунта высотой не менее 0,5 м в соответствии с п. 4.10 РД 39-133-94 «Инструкция по охране окружающей среды при строительстве скважин на нефть и газ на суше». Производится гидроизоляция стенок и дна амбара.

Безамбарное бурение

При безамбарном методе бурения буровой шлам направляется на операции по его обезвреживанию, утилизации без размещения в буровом шламовом амбаре. Операции по удалению бурового шлама определяются технологическими решениями, входящими в состав проектной документации, или технологии по обезвреживанию или утилизации бурового шлама.

3. Состав буровых шламов, их свойства

Согласно определению Отраслевого стандарта ОСТ 51.01-06-85 буровой шлам - это измельченная выбуренная порода, загрязненная остатками бурового раствора (ОБР). Буровой шлам является одним из видов отходов, образующихся в процессе бурения нефтяных и газовых скважин.

Выбуренная порода содержит компоненты отработанного бурового раствора и породы, слагающей разрез (песчаник, глина, и др.) (ОСТ 51.01-06-85).

Буровые отходы образуются следующим образом. В процессе бурения в скважину подается буровой раствор, который смазывает и охлаждает инструмент, выводит на поверхность выбуренную породу, компенсирует внутрискважинное давление, снижает интенсивность образования и укрепляет стенки скважины. В результате на поверхности образуются буровые сточные воды, отработанный буровой раствор и загрязненная выбуренная порода (буровой шлам). Все эти три составляющие буровых отходов в различных пропорциях содержат воду, частицы выбуренной породы, нефть и компоненты бурового раствора. Нефть попадает в буровые отходы при прохождении нефтеносных пластов и при использовании ее в буровом растворе (Экология нефтегазового комплекса, 2003). Высочайшую опасность ДЛЯ объектов природной среды представляют производственно-технологические отходы бурения, которые накапливаются и хранятся непосредственно на территории буровой. В своем составе они содержат широкий спектр загрязнителей минеральной и органической природы, представленных материалами и химреагентами, используемыми для приготовления и обработки буровых растворов.

Бурение скважин осуществляется в осадочных отложениях, в которых наиболее распространенными являются глинистые породы. Их доля составляет 65-80%. Выбуренные частицы глинистых или скреплённых глинистым цементом пород в процессе гидротранспорта с забоя скважины на поверхность пропитываются фильтратом промывочной жидкости и набухают. Продолжительность нахождения частиц породы в промывочной жидкости с глубиной скважины возрастает и может достигать нескольких часов. Чем дольше они находятся в промывочной жидкости, тем сильнее их набухание.

Происходит адгезионное присоединение к частицам твёрдой фазы частиц, преимущественно коллоидных размеров, из промывочной жидкости.

На изменение физико-химических свойств частиц выбуренной породы при превращении их в буровой шлам влияет пропитка дисперсионной средой промывочной жидкости. Поры и трещины частиц породы заполняются дисперсионной средой промывочной жидкости, поверхность глинистых частиц модифицируется, на внешней и внутренней поверхности частиц выбуренной породы адсорбируются вещества различной природы из компонентного состава промывочной жидкости.

Минералогический состав бурового шлама определяется литологическим составом разбуриваемых пород и может существенно изменяться по мере углубления скважины. Гранулометрический состав бурового шлама определяется типом и диаметром породоразрушающего инструмента, механическими свойствами породы, режимом бурения, свойствами промывочной жидкости и изменяется в широких пределах (РД 39-133-94).

Химический состав бурового шлама зависит как от его минерального состава, так и свойств промывочной жидкости (Патин, 2001).

По агрегатному состоянию данные отходы могут быть систематизированы как жидкие (текучие), полужидкие (пастообразные) и твердые. При этом основным признаком их отнесения к тому или иному виду в данной систематизации является содержание твердой и жидкой фаз. Так, при содержании твердой фазы до 35 % отходы сохраняют свою подвижность и текучесть и относятся к жидким отходам (ОБР). При содержании твердой фазы от 35 до 85 % отходы имеют пастообразный вид и относятся к полужидким (это ОБР с буровым шламом). И наконец, при содержании жидкости в составе отходов менее 15 % их следует отнести к категории твердых отходов (выбуренная порода или буровой шлам) (Экология при строительстве..., 2011).

В зависимости от способа бурения, вида применяемых буровых растворов, способа обезвреживания отходы бурения — буровые шламы, буровые сточные воды, буровые растворы относятся к разным классам опасности для окружающей среды и здоровья человека. Формирование ствола скважины в процессе бурения осуществляется за счет постоянного разрушения горных пород на забое тем или иным способом, для чего используются специальные буровые растворы. Разработка нефтяных залежей наклонно-направленными скважинами с горизонтальным участком ствола в продуктивном пласте, позволяющими увеличить объем добычи нефти из залежи за счет повышенных дебитов нефти по сравнению с обычными наклонно-направленными скважинами, производиться не только с использованием буровых растворов, но и нефтепродуктов. Это определяет

происхождение буровых шламов, содержащих высокое количество нефти, и относящихся к 3-му классу опасности.

В соответствии с Федеральным классификационным каталогом отходов (ФККО), утвержденным приказом Росприроднадзора от 22.05.2017 N 242 отходы бурения относятся к 3, 4 или 5-у классу опасности для окружающей среды:

Перечень отходов по ФККО:

29010111394 шламы **буровые** при бурении, связанном с геолого-разведочными работами в области изучения недр, малоопасные

29010112395 шламы **буровые** при бурении, связанном с геолого-разведочными работами в области изучения недр, практически неопасные

29111001394 растворы **буровые** при бурении нефтяных скважин отработанные малоопасные

29111081394 растворы **буровые** глинистые на водной основе при бурении, связанном с добычей сырой нефти, природного газа и газового конденсата, малоопасные

29111112393 растворы **буровые** на углеводородной основе при бурении, связанном с добычей сырой нефти, природного газа и газового конденсата, отработанные умеренно опасные

29111541393 растворы **буровые** с добавлением реагентов на основе фенола и его производных, отработанные при проходке разрезов с соляно-купольной тектоникой, умеренно опасные

29112001394 шламы **буровые** при бурении, связанном с добычей сырой нефти, малоопасные

29112011394 шламы **буровые** при бурении, связанном с добычей природного газа и газового конденсата, малоопасные

29112081394 шламы **буровые** при бурении, связанном с добычей сырой нефти, природного газа и газового конденсата, с применением бурового раствора глинистого на водной основе малоопасные

29112111393 шламы **буровые** при бурении, связанном с добычей сырой нефти, природного газа и газового конденсата, с применением бурового раствора на углеводородной основе умеренно опасные

29112112394 шламы **буровые** при бурении, связанном с добычей сырой нефти, природного газа и газового конденсата с применением бурового раствора на углеводородной основе малоопасные

29112122394 шламы **буровые** при бурении, связанном с добычей сырой нефти, природного газа и газового конденсата, с применением бурового раствора на углеводородной основе обезвоженные малоопасные

29112411394 шламы **буровые** при бурении, связанном с добычей сырой нефти, природного газа и газового конденсата, с применением бурового раствора глинистого на водной основе с добавлением биоразлагаемых полимеров

29112421394 шламы **буровые** при бурении, связанном с добычей сырой нефти, природного газа и газового конденсата, с применением бурового раствора солевого на водной основе с добавлением биоразлагаемых полимеров

29112521394 шламы **буровые** при проходке разрезов с соляно-купольной тектоникой

29113001324 воды сточные **буровые** при бурении, связанном с добычей сырой нефти, малоопасные

29113011324 воды сточные **буровые** при бурении, связанном с добычей природного газа и газового конденсата, малоопасные

29126111393 шламы **буровые** при капитальном ремонте скважин с применением бурового раствора на углеводородной основе умеренно опасные

29126177395 шламы **буровые** от капитального ремонта скважин при добыче сырой нефти, природного газа и газового конденсата в смеси практически неопасные

29126178394 шламы **буровые** от капитального ремонта скважин при добыче сырой нефти, природного газа и газового конденсата в смеси, содержащие нефтепродукты в количестве менее 2%

29126179394 шламы **буровые** от капитального ремонта скважин при добыче сырой нефти, природного газа и газового конденсата в смеси, содержащие нефтепродукты в количестве 2% и более

29220101324 растворы **буровые** отработанные при бурении, связанном с добычей калийных солей

29921211395 шламы **буровые** при бурении, связанном с добычей пресных и солоноватых подземных вод

29111011394 растворы **буровые** при бурении газовых и газоконденсатных скважин отработанные малоопасные

29111411393 растворы **буровые** глинистые на водной основе с добавлением биоразлагаемых полимеров отработанные при бурении, связанном с добычей сырой нефти, природного газа и газового конденсата, умеренно опасные

74721311404 шламы буровые после термической десорбции нефти

81112211394 растворы **буровые** глинистые на водной основе при горизонтальном, наклонно-направленном бурении при строительстве подземных сооружений

81112311394 шламы **буровые** при горизонтальном, наклонно-направленном бурении с применением бурового раствора глинистого на водной основе малоопасные

81112312395 шламы **буровые** при горизонтальном, наклонно-направленном бурении с применением бурового раствора глинистого на водной основе практически неопасные.

4. Влияние нефти на окружающую среду

- 4.1. Нефть и нефтяное загрязнение Попадая в почву, нефть может находиться в следующих состояниях (Вальков и др.,
- попадая в почву, нефть может находиться в следующих состояниях (вальков и др., 2013):
- в жидком подвижном состоянии в свободной, растворенной водной или водно-эмульсионной фазе в порах;
- в свободном неподвижном состоянии в порах и трещинах, выполняя роль цемента между почвенными частицами и агрегатами;
- в сорбированном состоянии, связанном с органической и/или органоминеральной массой;
 - в виде сплошного слоя на поверхности почвы.

Интенсивность испарения и окисления нефти зависит от многих факторов, которые объединяются в 2 группы: внешние и внутренние. К внешним факторам относятся (Вальков и др., 2013):

- температура воздуха чем выше температура воздуха, тем выше скорость окислительных процессов, т.е. основная часть процессов испарения легких фракций и окисления тяжелых происходит в летнее время, зимой же напротив, большинство тяжелых фракций переходят в твердое состояние и вообще не окисляются;
- ветреность обдувая верхний загрязненный слой почвы, ветер создает динамически повышенную концентрацию кислорода, что способствует окислению;
- доля УФ-излучения в солнечной радиации УФ-излучение катализирует реакции окисления;
- растительный покров при небольших локальных загрязнениях способен поддерживать жизнедеятельность почвенных микроорганизмов за счет опада.

Внутренние факторы (Вальков и др., 2013):

- структура почв;
- сложение почв;

- гранулометрический состав почв;
- степень аэрации;
- влажность;
- содержание органического вещества;
- микробиологическая активность, активность биохимических процессов.

4.2. Элементный и фракционный состав нефти.

Нефть – жидкое горючее полезное ископаемое, относящееся к каустобиолитам. По составу нефть представляет собой сложную смесь жидких углеводородов и сернистых, кислородистых и азотистых органических соединений, в которой также растворены твердые углеводороды и смолистые вещества; всего более 1000 различных компонентов. В отличие от других каустобиолитов, нефть занимает последнее место по количеству золы, зольность нефти не превышает 0,1 % (Гилязов, Гайсин, 2003).

Элементный состав нефти различается в зависимости от региона добычи, но общие процентные соотношения остаются примерно постоянными: углерод 83-87 %; водород 12-14 %; азот 0,02-1,7 %, сера 0,5-6 %, кислород 0,005-3,6 % (реже до 5-6 %). В нефти всегда содержится некоторое количество микроэлементов (до 50), составляющих зольную фракцию (Бурдынь, Закс, 1975; Пиковский, 1988).

Микроэлементы нефти можно разделить на две группы: токсичные и нетоксичные. К нетоксичным и малотоксичным микроэлементам нефти относятся: Si, Fe, Al, Mn, Ca, Mg, P, составляющие большую часть золы нефти. Микроэлементы — V, Ni, Co, Pb, Cu, U, As, Hg, Mo и другие — в случае повышенных концентраций могут оказывать токсичное влияние на биогеоценоз (Гилязов, Гайсин, 2003; Леднев, 2008).

В состав всех нефтей входят следующие классы углеводородов: предельные (метановые) — алканы (содержание 25-40 % по объему), циклические насыщенные — нафтеновые углеводороды, циклоалканы (содержание 25-75 % по объему) и ароматические — арены (содержание 10-35 % по объему). Углеводороды нефтей представлены твердыми, жидкими и газообразными формами. Различают нефти с парафиновым основанием (содержат главным образом жидкие углеводороды) и нефти с асфальтовым основанием (содержат большое количество твердых углеводородов) (Павлов, Терентьев, 1967).

На основании классов углеводородов, входящих в состав нефти, А. Нельсон-Смитом была разработана классификация с выделением 4 групп углеводородов для морских сред: парафины (алканы), нафтены (циклопарафины), ароматические, олефины (алкены) (Нельсон-Смит, 1977).

С эколого-геохимической точки зрения, важной представляется классификация нефти по фракционному составу (легкие, средние и тяжелые фракции), подробно описанная Петровым. По его мнению, наиболее значимы содержание легкой фракции, метановых углеводородов (твердых парафинов), циклических углеводородов, смол и асфальтенов, сернистых соединений (Петров, 1984).

Легкие фракции – представлены наиболее простыми по строению низкомолекулярными углеводородами (метановыми, нафтеновыми, ароматическими) – наиболее подвижными и токсичными частями нефти. На поверхности эта фракция в первую очередь подвергается испарению и физико-химическим процессам разложения. Имеются данные, что от 20 до 40 % легких фракций удаляется из почвы посредством испарения (Мс Gill, 1977).

Одним из компонентов легких фракций является парафин (температура застывания +18 °C). Его количество колеблется от весьма малых величин до 15-20 %. Твердый парафин нетоксичен для живых организмов, но очень трудно разрушается ввиду своих физических свойств, запечатывая поры и лишая почву свободного влаго- и воздухообмена, что в первую очередь приводит к полной деградации биоценоза (Мс Gill, 1977; Пиковский, 1988).

Основную массу ароматических углеводородов – наиболее токсичных компонентов нефти в составе легкой фракции – составляют ПАУ (полиароматические углеводороды). Среди голоядерных ПАУ наибольший интерес представляет бенз(а)пирен, как наиболее распространенный представитель канцерогенных веществ (Губергриц и др., 1975; Пиковский, 1988). Главный фактор деградации ПАУ в окружающей среде – фотолиз под действием ультрафиолетового излучения. В почве процесс фотолиза возможен лишь на поверхности, поэтому трансформация и снижение содержания ПАУ даже в верхних горизонтах сильно растянуты по времени (Шилина, 1985).

Не менее токсичны моноядерные ароматические углеводороды в составе легкое фракции нефти – бензол, толуол и их гомологи. Они способны растворяться в воде, в результате чего легко мигрируют с латеральными и радиальными потоками, расширяя ареал загрязнения (Моторыкина и др., 2008).

Средние и тяжелые фракции, помимо прямого негативного воздействия, наносят косвенный вред. При нормальной температуре это твердые аморфные вещества, они адсорбируются из раствора почвенными частицами, склеивают их, застывают, и образуют корку. При неблагоприятных почвенно-геохимических условиях (наличии глеевовосстановительных условий) битуминозные вещества сохраняются в почвах очень долго, а образование на поверхности нефтяной корки полностью исключает испарение легких фракций с глубины профиля (Шепелев и др., 2009).

Среди тяжелых неуглеводородных компонентов нефти преобладают смолы и асфальтены, воздействие которых заключается, главным образом, не в химической токсичности, а в значительном изменении водно-физических свойств нефтезагрязненных почв. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты аккумулируются в основном в верхнем гумусовом горизонте, прочно его цементируя, при этом уменьшается поровое пространство почвы. Смолисто-асфальтеновые компоненты гидрофобны, обволакивая корни растений, они резко ухудшают поступление к ним влаги, в результате чего растения засыхают. Смолисто-асфальтеновые вещества малодоступны микроорганизмам, в результате процесс их разложения в почве может продолжаться десятки лет. При окислительной деградации нефти в почвах идет накопление смолисто-асфальтеновых веществ, независимо от того, происходит механическое вымывание загрязнителей или нет (Пиковский и др., 1979; Пиковский и др., 1985; Пиковский, 1988).

Среди других не углеводородных компонентов нефти можно выделить сернистые соединения (сероводород, меркаптаны, сульфиды, дисульфиды, тиофены, свободная сера). Особенно токсичны сероводород и меркаптаны – они оказывают подавляющее влияние на микроорганизмы (Пиковский, 1988).

Различают следующие основные физические свойства нефти: плотность, вязкость, сжимаемость и другие.

Плотность определяется как соотношение массы к объему. Различают легкую и тяжелую нефть, в зависимости от того по какую сторону она находится от плотности 900 кг/м³. Газовые конденсаты, бензин, керосин относятся к легкой, а мазут к тяжелой нефти.

Вязкость нефти

Вязкость нефти определяется ее подвижностью, т.е. способностью сопротивляться перемещению частиц относительно друг друга. Другим словом, вязкость это свойство, которое отвечает на вопрос, какое ее свойство используют в первую очередь, перекачивая по нефтепроводу. Различают динамическую и кинематическую вязкость. Первая из них зависит от времени и измеряется в паскалях секундах. Кинематическая вязкость характеризует ее изменение в зависимости от температуры.

Основные физико-химические параметры нефти в различных нефтегазоносных провинциях России приведены в таблице.

Таблица 1. Диапазон изменений основных физико-химических параметров нефти в различных нефтегазоносных провинциях России (Требин и др, 1980)

Параметры	20% залежей	50% залежей	Республика Коми	Татарст ан	Башкортоста н	Куйбышевская обл.	Волгоградск ая обл.	Зап. Сибирь	Сахалинская обл.
содержание серы, %	0,5-1,1	0,3-1,7	0,9	1,5	2,8	1,6	0,3	0,9	0,2
содержание парафинов, %	3,6-4,9	2,7-5,9	2,0	3,4	4,3	8,9	2,5	2,2	0,4
газосодержание. М3/м ³	39,5-60,5	26,0-86,0	9,4	49,0	15,2	42,3	44,5	89,7	98,0
вязкость пластовой нефти, МПА/с	1,8-3,5	1,1-6,9	21,2	3,1	20,6	3,5	5,6	0,9	1,5
вязкость разгазированной нефти, Мпа/с	10,9-18,5	6,4-33,0	37,1	-	30,3	19,5	20,0	5,8	2,9
плотность пластовой нефти, г/см ³	0,777- 0,815	0,741-0,844	0,863	0,807	0,881	0,824	0,823	0,739	0,782
плотность разгазированной нефти, г/см ³	0,850- 0,868	0,835-0,884	0,879	0,866	0,892	0,863	0,869	0,851	0,852
содержание азота, %	5,0	3,2-16,4	3,4	8,6	10,6	8,3	2,4	5,6	1,2

Таким образом, очевидно, что нефть, добываемая в различных регионах, имеет существенные различия в составе и свойствах, несмотря на то, что состоит из одних и тех же химических элементов. Соответственно, ее состав и свойства будут определять подходы к утилизации бурового шлама, получению готовой Продукции, а также особенностями ее возможного негативного воздействия на компоненты природной среды, и в первую очередь почвы.

5. Перечень возможных технологических решений

5.1. Возможные направления использования готовой продукции, произведенной из бурового шлама

Основные направления использования продукции полученной из бурового шлама:

- В различных конструктивных элементах промысловых автомобильных дорог (укрепления обочин дорог по СНиП 2.05.02-85, сооружение земляного полотна автомобильных дорог без твердого покрытия, укрепление откосов дорог);
- Строительство площадок и других сооружений на месторождениях нефте- и газодобычи;
 - Укрепление территорий с высокой степенью эрозии;
- Проведение работ по планировке территорий в ходе строительства и благоустройства производственных территорий выравнивания рельефа (засыпки балок, оврагов);
 - Послойное укрытие отходов на полигонах твёрдых бытовых отходов;
 - Засыпка отработанных карьеров, амбаров, траншей;
 - Рекультивация буровых шламовых амбаров.

Однако следует не забывать особенности применения готовой продукции с учетом категории земельных участков, особых охранных зон и т.д., на которых она может применяться.

5.2. Направления утилизации буровых шламов

Исходя из способов бурения, можно выделить два направления утилизации бурового шлама:

1. Утилизация бурового шлама в готовую продукцию после его размещения в буровых шламовых амбарах.

Буровой шлам, размещенный в буровых шламовых амбарах, целесообразно утилизировать в готовую продукцию и использовать для рекультивации земельных участков, нарушенных буровыми шламовыми амбарами.

Недостаток данного направления утилизации бурового шлама:

- сложности при перемешивании бурового шлама в буровом шламовом амбаре, дно и стенки которого выполнены из геотекстильного материала, который может быть нарушен ковшом автоспецтехники.

Устранение недостатка:

- обустройство неглубоких буровых шламовых амбаров, покрытие дна бурового шламового амбара песком, затем подача бурового шлама в расчетных количествах с добавлением необходимых компонентов, перемешивание.
 - 1. Утилизация бурового шлама, выходящего из-под станка, с получением готовой продукции.

Готовая продукция после утилизации бурового шлама в зависимости от технологических решений может быть использована при проведении земляных работ в следующих направлениях:

- рекультивации нарушенных земель (например, карьеров);
- отсыпки и укрепления оснований, обваловок откосов промышленных площадок основных и вспомогательных объектов инфраструктуры нефтегазовых месторождений, проектом которых допускается грунтовое основание;
- -отсыпки оснований внутрипромысловых автомобильных дорог нефтегазовых месторождений, проектом которых допускается грунтовое основание.

Производство грунта для рекультивации может быть двух типов:

- Использование грунта для технических мероприятий;
- Использование грунта в качестве плодородного для биологических мероприятий.

Направление использования готовой продукции определяется технологическими решениями, выбранными компонентами для утилизации бурового шлама, их соотношениями.

6. Технологические решения использования бурового шлама с производством готовой продукции

Характеристика бурового шлама

Буровой шлам, образующийся при бурении скважин на месторождениях Салым Петролеум Девелопмент Н.В., имеет следующие основные характеристики по химическим показателям:

Таблица

Шифр	W, %	рН	Сухой	Содержание		
пробы		водный	остаток	нефтепродуктов		
		ед. рН	%	мг/кг		
12026	40	9,6	0,73	1545		
12027	50	9,3	1,15	2032		

^{*}W – влажность; определяется в соответствии с Φ P 1.31.2009.05394 , где считается, что 100% - вода.

Продолжение таблицы

Шифр		Содержание металлов, валовые формы, мг/кг									
пробы	Fe	Al	Si	Ca	Mg	K	Na				
12026	43722,48	52282,21	350375,99	13187,70	11092,27	11139,70	3396,09				
12027	35123,01	34429,08	334036,13	16514,69	8228,27	7008,87	3919,83				

Продолжение таблицы

Шифр	Содержа	Содержание металлов, валовые формы, мг/кг									
пробы	Mn	Ba	Sr	V	P						
12026	852,60	296,35	136,33	109,08	523,71						
12027	816,52	202,40	127,71	89,69	534,27						
ПДК	-	1	-	150	-						

Продолжение таблицы

Шифр	Содержание химических веществ, валовые формы, мг/кг									
пробы	As	Cd	Co	Cr	Cu	Ni	Pb	Zn	Mo	
12026	11,009	0,187	14,544	71,127	44,740	42,685	90,586	104,613	1,653	
12027	7,818	0,214	11,092	57,252	25,994	33,293	26,821	77,280	2,479	
ОДК	10	2,0	-	-	132	80	130	220	-	

Продолжение таблицы

Шифр		Содержание металлов, подвижные формы, мг/кг											
пробы	Cu	Ni	Zn	Co	Cr	As	Pb	Cd	V	Mn			
12026	1,158	1,707	9,57	0,649	0,4	0,523	15,35	0,03	0,479	133,1			
12027	0,466	1,965	4,11	0,699	0,28	0,726	4,67	0,03	0,471	123,9			
ПДК	3,0	4,0	23,0	5,0	6,0	-	6,0	-	-	700			

Влажность буровых шламов, определенная в соответствии с ФР 1.31.2009.05394 «Количественный химический анализ почв. Методика выполнения измерений массовой доли влаги в твердых и жидких отходах производства и потребления, почвах, осадках, шламах, активном иле, донных отложениях гравиметрическим методом)» составляет 40 и 50%. Влажность в пересчете согласно ГОСТ 28268 «Методы определения влажности, максимальной гигроскопической влажности и влажности устойчивого завядания растений»

образца бурового шлама (№12026) составляет 71,7%, образца бурового шлама (№12027) - 105.3%.

Исходя из представленных данных буровой шлам обладает относительно благоприятными свойствами: рН водный не превышает 10 единиц рН, величина сухого остатка варьирует в пределах 7 - 11 г/кг бурового шлама, содержание нефтепродуктов — 2 г/кг, что не превышает нижнего уровня установленных значений допустимого остаточного содержания нефтепродуктов в почвах (Постановление Правительства Ханты-мансийского автономного округа — Югры от 10 декабря 2004 г. N 466-п «Об утверждении регионального норматива "Допустимое остаточное содержание нефти и нефтепродуктов в почвах после проведения рекультивационных и иных восстановительных работ на территории Ханты-Мансийского автономного округа - Югры").

Оценку содержания металлов в буром шламе проведем исходя из уровня содержания этих элементов в почвах, значений кларка и установленных значений ПДК (ОДК) для почв ПДК нормативы качества (ФЗ№ 7 «Об охране окружающей среды», хотя и являются санитарно-гигиеническими нормативами и не дифференцированы с учетом свойств почв. санитарно-Общую загрязненность почвы характеризует валовое количество тяжелого металла. Доступность же элементов для растений определяется их подвижными формами. Поэтому содержание в почве подвижных форм тяжелых металлов - важнейший показатель, характеризующий санитарно-гигиеническую обстановку и определяющий необходимость проведения мелиоративных детоксикационных мероприятий.

Характеристика бурового раствора

		сухой	Содержание, мг/л									
Вид жидкости	pН	остато к, мг/л	Cl	PO ₄	SO_4	S (сульфиды)	F	S	P			
Буровой раствор	6,9	22950	3123	0	113,0	0,045	0	222	165,4			
Буровой раствор	6,92	9464	625	0	3,4	0	0	142	130,7			
Жидкость из шламового амбара	7,27	5134	265	0	65,3	0,145	0	143	251,2			

Реакция среды в буровых растворах и жидкости близка к нейтральной (рН 6,9 – 7,3); содержание солей варьирует от состава бурового раствора – 22 мг/л. В жидкости из шламового амбара, вероятно, буровой раствор, попадающий в шламовый амбар вместе с буровыми шламами. Разбавляется буровыми сточными водами, атмосферными осадками и солесодержание составляет 5 г/л. В составе солей доля хлоридов не превышает 13%. Возможно, высокое содержание солей (сухой остаток) связано с применением кальцинированной соды (определение карбонатов, гидрокарбонатов в работе), органических веществ в составе буровых растворов.

Таким образом, оценивая состав буровых шламов, содержащих остатки буровых растворов, буровых сточных вод, а также состав буровых растворов можно выделить основные показатели, которые могут негативно воздействовать на компоненты природной среды, и в первую очередь на почвы (интегральный показатель состояния природной среды) содержание солей.

В настоящее время содержание солей не нормируется в почвах. В составе солей, попадающих в буровой шлам вместе с буровыми растворами могут присутствовать те вещества, которые используются в буровых растворах – хлористый калий (источник ионов калия в буровом растворе), кальцинированная сода (связывание ионов кальция, магния в растворе, регулирование рН раствора, химический диспергатор глин при приготовлении глинистых растворов), каустическая сода (регулирование рН раствора, приготовление щелочнорастворимых реагентов), карбонат кальция (утяжелитель и кольматирующий агент в буровом растворе)сульфат бария (утяжеление глинистых буровых растворов).

Привнос солей с буровыми шламами и буровыми растворами в почвы будет приводить к засолению почв.

При засолении почв легкого гранулометрического состава (подзолы) с малой мощностью гумусового горизонта в условиях промывного режима будет производить вымывание солей (хлоридов) за пределы почвенного профиля, при этом будет происходить загрязнение грунтовых воды, а также поверхностных в случае питания ими вод поверхностного водного объекта.

При засолении почв болотного ряда будет происходить засоление почв на многие годы, снизить уровень содержания солей достаточно трудно.

Солевое нарушение в почвах начинает происходить: в минеральных почвах при содержании солей более 0,1%, в органогенных -0,5-1,5%. При этом происходить изменение функционирования растительности, выражающееся в изменении видового состава, эвтрофикации и т.д.

Результаты исследования бурового шлама показывают низкое содержание нефтепродуктов, которое не требует снижения; более того, будет происходит разбавление концентрации веществ за счет введения песка (грунта).

При разработке новой технологии утилизации бурового шлама необходимо решить задачи в части:

1) придания буровому шламу механической устойчивости для соответствия грунтам, используемым для аналогичных видов работ;

- 2) снижения миграционной способности загрязняющих веществ (нефтепродуктов, металлов, **хлоридов и других солей**) из бурового шлама в компоненты природной среды;
 - 3) снижение влажности бурового шлама.
- 4) придание свойств, благоприятных для произрастания растительности. Грунта Soil +

Пути решения задач:

Механическая устойчивость готовой продукции, произведенной в результате обработки бурового шлама, достигается путем введения песка (песок не более 50 %). Добавление песка также способствует снижению влажности исходного материала.

Снижение миграционной способности загрязняющих веществ из бурового шлама в компоненты природной среды достигается путем использования веществ — сорбентов и увеличения поверхности раздела между твердыми минеральными, органическими и органоминеральными компонентами. На этих поверхностях раздела непрерывно происходят реакции сорбции-десорбции и обмена различных классов соединений — ионных, неионных, гидрофильных и гидрофобных. Реакции локализованы и приурочены к функциональным группам, носителями которых являются глинистые минералы и минералы гидроксидов металлов.

7. Научно-теоретическое обоснование целесообразности получения Продукции – Грунта Soil+ путем утилизации буровых шламов (отходов бурения), и ее использования в качестве рекультиванта

Технология предполагает производство Продукции с целью использования в качестве материала для восстановления (рекультивации) земель, нарушенных при строительстве шламовых амбаров, накопителей буровых отходов, полигонов твердых коммунальных отходов (ТКО) и промышленных отходов (ПО), сухоройных/торфяных карьеров; земель, нарушенных в результате ликвидации последствий разливов нефти и нефтепродуктов; других нарушенных при строительстве земель. Это подразумевает формирование нового субстрата в виде смеси, выступающего:

- подстилающими и почвообразующими породами, которые были нарушены или удалены на земельном участке, подлежащем восстановлению. Эти смеси как породы в дальнейшем собственно будут служить основой для формирования почвенного профиля.
 - плодородного грунта.

Буровой шлам представляет собой смесь выбуренной горной породы с отработанными буровыми растворами. Буровые шламы имеют схожесть с породами и

имеют потенциал для развития почвообразовательных процессов. Буровые шламы содержат тонкодисперсные частицы выбуренных пород и технологически принесенные глинистые компоненты. Эти компоненты отходов бурения будут способствовать сорбции загрязняющих веществ ввиду присутствия глинистых минералов в выбуренной породе и из буровых растворов (например, бентонит). Кроме того, в буровых растворах и шламах содержатся биофильные элементы: кальций, калий, фосфор, микроэлементы (Игонин и др, 2006), которые, в целом, будут создавать благоприятные условия для функционирования вновь формирующейся экосистемы.

Шламы в смеси с разбавляющими добавками (песком, торфом, мелиорирующими добавками) являются достаточно плодородной почвообразующей породой (более плодородной нежели исходные почвообразующие породы), увеличивающей за счет тонкодисперсных частиц водоудерживающую и поглотительную способность и актуальное плодородие исходных почвогрунтов восстанавливаемой территории, на что указывали авторы (Смагин, 2008).

Существующие технологические подходы к восстановлению компонентов природной среды при ликвидации последствий функционирования буровых шламовых амбаров основываются на формировании на их месте новых искусственных.

Однако, исходно буровые шламы обладают отрицательными водно-физическими (бесструктурность, слабая фильтрационная способность, сильная набухаемость при увлажнении) и химическими (рН, содержание нефтепродуктов, хлоридов, тяжелых металлов) свойствами. В связи с чем, необходимо оптимизировать данные свойства до значений, при которых буровой шлам в смеси с другими компонентами как готовый Продукт - Грунт мог бы встраиваться в экосистемы, выполнять необходимые экологические свойства с последующим формированием органолитостратов.

Выводы: Таким образом, очевидна целесообразность и необходимость производства Продукции – Грунта Soil+ путем утилизации буровых шламов (отходов бурения) для производства Продукции с целью ее использования в качестве рекультиванта.

7.1.Экспериментальное обоснование утилизации бурового шлама и рецептуры приготовления грунта Soil+

С целью установления безопасного уровня содержания загрязняющих веществ в готовой Продукции - Грунт Soil⁺ проведены экспериментальные исследования различных соотношений смешиваемых компонентов: буровых отходов и компонентов, улучшающих свойства отходов, направленные на выбор такого долевого соотношения, которое позволяет получать Продукцию, отвечающую по своему составу и свойствам требованиям

нормативных документов, а также обеспечивающий экологическую безопасность и механическую устойчивость готовой продукции.

Для поиска оптимальных соотношений ингредиентов – бурового шлама (отходов бурения) и материалов, улучшающих его свойства, были поставлены следующие задачи:

- 1) исследование физических, химических, токсикологических в экспериментальных смесях ингредиентов, предоставленных для исследования;
- 2) установления допустимого содержания загрязняющих веществ в смесях бурового шлама с выбранными материалами.
- определение оптимального соотношения ингредиентов в приготовляемых смесях,
 при котором:
- исключается возможность поступления загрязняющих веществ в сопредельные среды и на сопредельные территории.

В рамках рассматриваемого научного эксперимента были выбраны компоненты (материалы), при внесении которых изменяются свойства буровых отходов (бурового шлама). Для постановки модельных экспериментов формировались варианты смесей бурового шлама с различными компонентами дозами нефти. Смеси готовили путем механического перемешивания компонентов в различных пропорциях.

Для моделирования наилучшего с экологической и экономической точки зрения состава и свойств создаваемого готовой Продукции – Грунта Soil+ использовали научные основы и закономерности, разработанные для почв, принятые мировым сообществом и являющиеся основами генетического почвоведения, а именно устойчивость и сорбционную способность почв.

Основными факторами, влияющими на изменение свойств почв грунтов, являются:

- гранулометрический состав;
- водопроницаемость;
- кислотное состояние;
- содержание органического вещества;
- содержание глинистых минералов;
- способность соединений переходить в мобильное состояние при изменении условий

Перечисленные свойства, а также особенности поведения веществ, входящих в состав Продукции – Грунта Soil+ в природно-климатических особенностях, в которых планируется его производить и использовать, применены и учтены в экспериментальных работах.

Моделируя наилучшие свойства создаваемой Продукции – Грунта Soil+, мы выбрали:

- Структурирующие компоненты, которые могут снизит влажность отходов бурения (бурового шлама), изменить гранулометрический состав, придать благоприятные водно-физические свойства буровому шламу, увеличить его порозность, водопроницаемость, а также снизить концентрацию загрязняющих веществ за счет разбавления. При выборе структурирующего компонента оценивалась экологическая безопасность и экономическая эффективность, в том числе транспортная доступность материала от территориальной привязанности технологии. В качестве структурирующего компонента выбраны карьерные грунты, повсеместно добываемые гидронамывным или сухоройным способами пески/супеси.
- Сорбирующий компонент для снижения подвижности загрязняющих веществ, за счет различных механизмов связывания.

Использование торфа при производстве грунтовых смесей, позволяет увеличить сорбционную способность бурового шлама, т.е удерживать загрязняющие вещества в своем составе в сорбированном состоянии за счет высокого содержания органического вещества, наличия функциональных групп, а также снизить влажность бурового шлама, изменить его кислотно-основные свойства.

8. Постановка модельных экспериментов для формирования почвоподобных тел, используемых для технических мероприятий

Модельные эксперименты проводились в лабораторных условиях при стандартных условиях (температура 17-18°С) на протяжении всего эксперимента. Условия проведения эксперимента были выбраны на основании природно-климатических условий района, в которых планируется реализация новой Технологии.

Эксперименты проводились с буровым шламом, характеристика которого и содержание основных загрязняющих веществ приведено в таблице 5.

Для оценки свойств готовой Продукции — Грунта Soil+, получаемого путем утилизации бурового шлама (отходов бурения), выбора наилучших решений утилизации бурового шлама исходя из физико-химических свойств получаемой Продукции, формировались смеси из бурового шлама и выбранных материалов, преобразующих его свойства. Для эксперимента составлялись модельные смеси, содержащие разные соотношения бурового шлама и выбранных материалов-мелиорантов. Содержание бурового шлама в экспериментах со смесями составляло 100, 70, 65%. Дозы вносимой нефти в модельные смеси варьировали от 0 до 50 г/кг и приведены в таблице 7. Исходное содержание нефтепродуктов в буровом шламе составляло 2 г/кг. Дозы нефти, вносимые в смеси, были выбраны исходя из возможного загрязнения почв нефтепродуктами, свойств

материалов-сорбентов, используемых в смесях, и значений нормативов ДОСНП в почвах ХМАО-Югры (Постановление правительства ХМАО-Югры от 10 декабря 2004 г. № 466-п). Наибольшая доза нефти, внесенная в смеси, составляла 50 г/кг. В эксперименте использована нефть, добываемая на лицензионных участках Компании Салым Петролеум.

Для оценки потенциальной способности сорбировать и удерживать загрязняющие вещества смесями на основе бурового шлама были поставлены лабораторные эксперименты, в которых оценивалась возможность миграции веществ из модельных смесей в водную среду с использованием водного миграционного показателя.

Методы исследования

Научное обоснование экологической безопасности производимой продукции из бурового шлама при подборе компонентов, улучшающих его свойства, проводили в лабораторных условиях в модельном эксперименте.

Количественный химический анализ проб бурового шлама, смесей бурового шлама с компонентами, улучшающими свойства, фильтрата, полученного в экспериментах, выполнен в аккредитованном испытательном центре факультета почвоведения МГУ, аттестат аккредитации № РОСС RU.0001.10ГП85 от 05.12.2014 г.

Методики исследования проб бурового шлама и смесей на его основе

Определение содержания нефти и нефтепродуктов в образцах ПНД Ф 16.1.38-02 «Методика выполнения измерений массовой доли нефтепродуктов в пробах почвы методом капиллярной газо-жидкостной хроматографии».

Определение солесодержания и рН в водной вытяжке проводится в соответствии с ГОСТ 26423 «Почвы. Методы определения удельной электрической проводимости, рН и плотного остатка водной вытяжки».

Определение ионов проводилось по ПНД Ф 16.1.8-98 «Методика выполнения измерения массовых концентраций ионов нитритов, нитратов, хлоридов, фторидов, сульфатов и фосфатов в пробах почв (в водорастворимой форме) методом ионной хроматографии».

Определение металлов проводилось в соответствии с:

ПНД Ф 16.1:2.3:3.11-98 Методика выполнения измерений содержания металлов в твердых объектах методами спектрометрии с индуктивно-связанной плазмой;

РД 52.18.289-90. Руководящий документ. Методические указания. Методика выполнения измерений массовой доли подвижных форм металлов (меди, свинца, цинка, никеля, кадмия, кобальта, хрома, марганца) в пробах почвы атомно-абсорбционным анализом.

Определение влажности - в соответствии с ГОСТ 28268-89 «Почвы. Методы определения влажности, максимальной гигроскопической влажности и влажности устойчивого завядания растений».

Методики исследования проб фильтрата

Определение рН и электропроводности проб фильтрата проводилось в соответствии с РД 52.24.495-2005 «Водородный показатель и удельная электрическая проводимость вод. Методика выполнения измерений электрометрическим методом».

Определение содержания нефтепродуктов в пробах фильтрата проводилось в соответствии с ГОСТ 31953-2012 «Вода. Определение нефтепродуктов методом газовой хроматографии».

Определение содержания фосфат-, фторид-, сульфат-, хлорид- ионов в пробах проводили в соответствии с ПНД Ф 14.1:2:4.132-98 «Количественный химический анализ вод. Методика выполнения измерений массовой концентрации анионов: нитрита, нитрата, хлорида, фторида, сульфата и фосфата в пробах природной, питьевой и сточной воды методом ионной хроматографии».

Содержание бария, ванадия, железа, кадмия, калия, кальция, кобальта, магния, марганца, меди, молибдена, мышьяка, натрия, никеля, свинца, стронций, хрома, цинка в пробах определялось в соответствии с ЦВ 3.18.05-2005 (ФР.1.31.2005.01714), ЗАО «ЦИКВ», свидетельство об аттестации ЦИКВ №070104 от 06.05.05 г. «Методика выполнения измерений элементного состава питьевых, природных, сточных вод и атмосферных осадков методом масс-спектрометрии с ионизацией в индуктивно связанной плазме».

8. Обоснование рецептуры Продукции, получаемой в результате переработки (утилизации) буровых отходов

8.1.Научно-теоретические аспекты и методические подходы

Для установления предельных концентраций загрязняющих веществ, безопасных для окружающей среды, необходимо обоснование допустимого уровня остаточного содержания нефтепродуктов в рамках разрабатываемых материалов оценки воздействия от применения технологии на окружающую среду. Поэтому, для обоснования возможности утилизации бурового шлама с получением готового Продукта – Грунт Soil+, содержащего определенное количество загрязняющих веществ, необходимы дополнительные экспериментальные научные исследования, подтверждающие отсутствие воздействия Продукта утилизации бурового шлама на окружающую среду.

В настоящее время нормативы качества для почв по нефтепродуктам и нефти не установлены, в том числе ПДК, которые также являются нормативами качества. ПДК загрязняющих веществ применимы для почв земель сельскохозяйственного использования и селитебных зон (в данном случае они не применимы к объектам, описываемым в Материалах ОВОС). Для ХМАО-Югры установлены нормативы допустимого остаточного содержания нефтепродуктов в почвах (Постановление Правительства ХМАО-Югры от 10 декабря 2004 года № 466-п «Об утверждении регионального норматива «Допустимое остаточное содержание нефти и нефтепродуктов в почвах после проведения рекультивационных и иных восстановительных работ на территории Ханты-Мансийского автономного округа-Югры»). Согласно этому документу для органоминеральных почв суглинистого и глинистого гранулометрического состава среднетаежной и северотаежной подзоны (дерново-подзолистые, подзолистые, болотно-подзолистые, глееземы, таежные слабодифференцированные) для органоминеральных горизонтов установлено значение – 30 г/кг; для минеральных почвенных горизонтов – 5 г/кг. Для органогенных горизонтов торфяных почв установлены значения от 20 до 60 г/кг. направление рекультивации – лесохозяйственное.

Экспериментальная оценка воздействия продуктов утилизации отходов компоненты природных сред является одной из ключевых проблем при обосновании их экологической безопасности и допустимости использования. В соответствии с № 89-ФЗ «Об отходах производства и потребления» все отходы производства и потребления делаться на 5 классов опасности по степени их негативного воздействия на окружающую природную среду. Классификация отходов основывается на сведениях о компонентном составе отходов, а также на основании экспериментальных данных по оценке их воздействия на гидробионтов («Приказ МПР и экологии РФ от 4 декабря 2014 года N 536 Об утверждении Критериев отнесения отходов к І-V классам опасности по степени негативного воздействия на окружающую среду»). Однако, можно признать, что существующий подход установления уровня воздействия на окружающую среду отхода и продукта, произведенного на его основе позволяет только оценить опасность отходов относительно друг друга и не отражает всех аспектов возможного негативного воздействия на компоненты природных сред, которые могут проявляться спустя некоторое время после размещения продукта использования, а значит, не отражает существующего негативного изменения компонентов окружающей среды при воздействии на них отходов.

Выводы. Таким образом, экспериментальное обоснование отсутствия негативного воздействия модельных смесей на компоненты природных сред проводится в лабораторных

условиях по химическим показателям. Кроме того, для оценки степени токсичности применяются биологические (токсикологические) методы.

8.2.Моделирование получения Продукции (Грунт Soil+) на основе бурового шлама и оценка ее воздействия на компоненты природной среды Исследование образцов модельных смесей по химическим показателям

Постановка эксперимента

Для оценки потенциальной способности сорбировать и удерживать загрязняющие вещества сформированными модельными смесями из бурового шлама проводили лабораторные эксперименты, в которых оценивалась возможность миграции веществ из модельных смесей в водную среду с использованием водного миграционного показателя. Подготовленные модельные смеси по рецептуре, приведенной в таблице 7, укладывались в контейнеры из сетчатого водопроницаемого инертного материала и помещались в стеклянные сосуды объемом 3,5 литра. В сосуд подавалась вода в объеме равном годовому количеству атмосферных осадков, выпадающих в районе, где предполагается применение Технологии (Нефтеюганский район ХМАО-Югры). Среднегодовая норма выпадения осадков на территории, где планируется применения Технологии, составляет 685 мм [«Научно-прикладной справочник...», 1998].

Перечень показателей, по которым анализировался фильтрат: содержание нефтепродуктов, общее солесодержание, pH, анионы, катионы, в том числе тяжелые металлы.

8.3.Оценка миграции загрязняющих веществ из модельных смесей в лабораторном эксперименте

В лабораторном эксперименте с модельными смесями оценивалась миграция загрязняющих веществ по водному миграционному показателю в фильтрационные воды (далее по тексту фильтрат). При экстраполяции модельного эксперимента с получением фильтрата на природные условия подразумевается поступление фильтрационных вод, образующихся в результате выпадения атмосферных осадков на участке, где будет использоваться модельный Грунт, в грунтовые и подземные воды.

Фильтрат, собранный из эксперимента с модельными смесями, содержащими в своем составе буровой шлам и песок в соотношении 65 : 35 и 70 : 30 характеризовался слабощелочной реакцией среды (рН 7,8), содержание нефтепродуктов варьировало от 0,24 до 4,58 мг/л и зависело от дозы внесенной нефти. Содержание металлов и мышьяка не превышало установленных значений ПДК.

Выводы. Буровой шлам содержит невысокие содержания загрязняющих веществ, которые переходят в фильтрат. Разбавление бурового шлама песком на 1/3 пропорционально снижало поступление загрязняющих веществ в фильтрат, содержание которых не превышает установленные значения ПДК для воды хозяйственно-питьевого и культурно-бытового водопользования. Добавление шунгита и глауконита приводит к снижению содержания нефтепродуктов.

Таблица - Результаты анализа фильтратов из модельных смесей

ном	Соотног	пение	Содержан	pН	Содержа	Общее	Хлори
ep	компонентов н	в модельной	ие	ед.	ние	солесоде	ДЫ
	смеси, объ	емные %	нефтепро	pН	нефтепр	ржание	
	БШ	песок	дуктов, г/ кг БШ		одуктов		
1	65	35	2	7,8	1,58	1928	151,1
2	65	35	2,5	7,8	1,15	1828	148,1
3	65	35	3,5	7,9	0,24	1836	155,4
4	65	35	7	7,8	0,39	1624	147,4
5	65	35	15	7,8	0,66	1160	153,4
6	65	35	30	7,8	2,88	1952	133,5
7	65	35	50	7,8	4,58	1984	177,5
8	70	30	2	7,9	0,82	2000	165,7
9	70	30	2,5	7,9	0,78	1984	169,4
10	70	30	3,5	7,8	0,89	1910	167,1
11	70	30	7	7,9	0,87	2086	170,7
12	70	30	15	7,9	1,42	1962	174,3
13	70	30	30	7,9	1,92	2125	171,4
14	70	30	50	7,8	4,60	2170	52,7
15	100			8,0	0,04	2738	232,2
16	100			7,9	0,00	2850	232,0
ПДК	х-п				0,3		350

^{*} БШ – буровой шлам

8.4.Оценка токсичности модельных смесей

С целью оценки токсичности модельных смесей проводили биотестирование фильтратов, полученных в эксперименте с применением водного миграционного показателя.

Фитотестирование фильтратов.

Биотестирование - метод определения интегральной токсичности пробы для определенной культуры организмов или растений в лабораторном эксперименте. Методы биотестирования с применением растений — метод фитотестирования обладает высокой чувствительностью, универсальностью, интегральностью и простотой (Воронина, 2009). Он широко применяется для определения токсичности поллютантов как в почве, так и в воде. Фитотоксичность активно используется в качестве показателя, оценивающего уровень загрязнения почв углеводородами нефти.

Фитотестирование проб каждой порции фильтратов, проводилось на однодольном растении - овсе обыкновенном *Avéna sativa* и двудольном растении - горчице белой *Sinápis álba*.

Мы наблюдали снижение энергии прорастания с увеличением содержания нефтепродуктов в составе бурового шлама, однако достоверных отклонений не было выявлено. Достоверность различий оценивали с помощью однофакторного дисперсионного анализа и попарного сравнения средних величин с использованием критерия Фишера (Fisher LSD). Результаты фитотестирования также не выявили достоверных различий при оценке длины корня и зародышевого стебля, хотя можно также констатировать явление гормезиса при содержании нефтепродуктов 2,5 г/кг бурового шлама в модельных смесях БШ: П как 65: 35 и 3,5 г в смесях БШ: П как 70: 30.

Биотестирование фильтратов

Образцы фильтратов из модельных смесей с содержанием бурового шлама 70% и песка 30% биотестировали с использованием гидробионтов из разных таксономических групп. Экспериментальная оценка фильтратов проводилась в независимой аккредитованной Лаборатории экотоксикологического анализа почв (ЛЭТАП) факультета почвоведения Московского государственного университета имени М.В. Ломоносова (аттестат аккредитации № РОСС RU.0001.513050).

Результаты биотестирования фильтрата из модельных смесей, а также из исходного образца бурового шлама показали отсутствие токсичности фильтратов, полученных в модельных экспериментах. Присутствие нефтепродуктов в модельных смесях в дозах до 50 г/кг не оказывало токсического воздействие на фильтраты. Также присутствие солей в

виде хлоридов, сульфатов, гидрокарбонатов не приводило к токсическому эффекту на ракообразных и инфузорий, но были токсичны для водорослей.

Выводы: буровой шлам, образующийся в результате производственной деятельности Салым Петролеум Девелопмент Н.В., а также смеси, приготовленные на основе бурового шлама с песком, не оказывают токсического воздействия на водную среду, а также почвы.

8.5.Оценка свойств модельных смесей по физическим показателям

Из литературных данных известно, что буровые шламы характеризуются высокой обводненностью: содержание воды может достигать 70 % от их влажной массы. И именно неблагоприятные водно-физические характеристики (повышенная дисперсность, высокая набухаемость и постоянная обводненность) ограничивают возможности использования буровых шламов (Пепелов, 2012). Поэтому необходимо дать оценку физическим показателям получаемой модельной смеси. Модельные смеси переданы на исследование физических свойств в аккредитованную Испытательную лабораторию ООО «ПЕТРОМОДЕЛИНГ ЛАБ».

Результаты исследования смесей, приведенные в таблице, подтвердили изменение их гранулометрического состава смесей, благоприятного для произрастания растений.

Таблица - Гранулометрический состав бурового шлама и модельных смесей

	Содержание частиц, %											
№ выработки	свыше 10 мм	10 - 5 мм	5 - 2 MM	2 - 1 MM	1 - 0,5 мм	0,5 - 0,25 мм	0,25 - 0,10 мм	0,10 - 0,05 мм	0,05 - 0,01 мм	0,01 - 0,002 мм	меньше 0,002 мм	Наименование грунта по ГОСТ 25100-2011
12027	0,0	0,0	0,0	0,0	0,0	0,4	3,3	10,9	24,0	26,7	34,7	Глина пылеват. легк. текуч.
12071	0,0	0,0	0,0	0,0	0,4	8,2	44,7	8,2	9,1	12,3	17,1	Суглинок песчанист. легк. текуч.
12072	0,0	0,0	0,0	0,0	0,6	6,7	36,3	11,1	12,3	11,7	21,3	Суглинок песчанист. легк. текуч.

Полученные смеси бурового шлама с песком в соотношении буровой шлам и песок как 70 и 30; 65 и 35 классифицируются как суглинки песчанистые в соответствии с ГОСТ 25100-2011.

Выводы: добавление песка изменяет физические свойства бурового шлама.

9. Модельные смеси для формирования плодородного грунта Soil+

Плодородный грунт Soil+ должен быть пригоден для произрастания растительности. Требования к качеству плодородного грунта установлены в следующих документах:

- Приказ министерство сельского хозяйства Российской Федерации от 4 мая 2010 г. N 150 «Об утверждении порядка государственного учета показателей состояния плодородия земель сельскохозяйственного назначения»; документ распространяется для учета показателей состояния плодородия земель сельскохозяйственного назначения.

ГОСТ 17.5.1.03-86 Охрана природы. Земли. Классификация вскрышных и вмещающих пород для биологической рекультивации земель; ГОСТ 17.5.3.06-85 Охрана природы. Земли. Требования к определению норма снятия плодородного слоя почвы при производстве земляных пород, в которых установлены показатели для оценки пригодности пород для использования пород или почв для биологической рекультивации: рН водной вытяжки, сухой остаток, сумма токсичных солей, обменный натрий, емкость катионного обмена, гумус, гранулометрический состав.

- ГОСТ 17.5.1.03-86 Охрана природы (ССОП). Земли. Классификация вскрышных и вмещающих пород для биологической рекультивации земель. Стандарт предназначен для исследования свойств вскрышных и вмещающих пород и их смесей при разведке месторождений полезных ископаемых, проектирования и выполнения рекультивационных работ на землях, нарушаемых в процессе горного производства и строительства. Вскрышные и вмещающие породы классифицируют по пригодности их использования для биологической рекультивации в зависимости от показателей химического и гранулометрического состава и инженерно-геологической характеристики.

В соответствии с требованиями перечисленных стандартов будут моделироваться смеси, в которых будут контролироваться следующие показатели: рН водной вытяжки, сухой остаток, сумма токсичных солей, обменный натрий, емкость катионного обмена, гумус, гранулометрический состав.

Отсутствие воздействия модельных смесей на компоненты природной среды показана в предыдущей главе.

Важной задачей при создании плодородного грунта является подбор видов растительности, способной произрастать на сформированном Грунте Soil+, в определенных природно-климатических условиях региона с учетом элементов ландшафта.

По окончании производства Грунта посредством утилизации бурового шлама (отходов бурения), его использования при проведении технических мероприятий рекультивации нарушенных земель, в том числе буровыми шламовыми амбарами, осуществляются биологические мероприятия. На этой стадии после создания плодородного слоя почвы высаживаются растения. В условиях утилизации бурового шлама и производства плодородного грунта, с учетом исходных свойств бурового шлама, целесообразно подбирать растительность, стойкую к нефтяным загрязнениям и активизирующую почвенную микрофлору растений. Такие растения способствуют процессам разложения, стабилизации и устранения остаточного содержания загрязняющих веществ из почвы. При этом присутствующие органические загрязняющие вещества могут модифицироваться в области корневой системы растений, а также в тканях растений.

После снижения нефтезагрязнения почв до уровня, когда на них спонтанно появляется растительность (нижний предел фитотоксичности), рекомендуется проведение фитомелиоративных работ с использованием нефтестойких растений.

10. Технологические решения использования бурового шлама с производством готовой продукции

Предполагается утилизация бурового шлама (отходов бурения) с получением двух видов готовой продукции:

- Грунт Soil+, используемый для технических мероприятий:

Рецептура производства

Буровой шлам не более 70 объемных %; не менее песок 30 объемных %;.

Дополнительно может быть добавлен шунгит 1-2% от объема бурового шлама.

- Грунт Soil+ плодородный, используемый для биологических мероприятий (приводятся ориентировочные соотношения):

Рецептура производства

Буровой шлам 60 объемных %; песок 40 объемных %; тор $\phi \le 10-20$ объемных %

Список литературы

- 1. Calabrese E.J. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. // Environ. Pollut. 2005. N_2 138. P. 378 411.
- 2. Calabrese E.J., Blain R.B. Hormesis and plant biology // Environ. Pollut. 2009. № 157. P. 42–48.
- 3. Kaur N., Erickson Todd E., Ball Andrew S., Ryan Megan H. A review of germination and early growth as a proxy for plant fitness under petrogenic contamination knowledge gaps and recommendations. // Science of the Total Environment. 2017. № 603 − 604. P. 728-744. http://dx.doi.org/10.1016/j.scitotenv.2017.02.179.
- 4. Ma, B., He, Y., Chen, H.-h., Xu, J.-m., Rengel, Z. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis. // Environ. Pollut. 2010. № 158. P. 855 861.
- 5. Reed M.L., Glick B.R. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. // Can. J. Microbiol. 2005. № 5. P. 1061 1069.
- 6. Udo E. J., Payemi A. A. The effect of oil pollution of soil on germination, growth and nutrient uptake of com//J. Environ. Quality. 1975. V. 4. P. 537-540.
- 7. Аммосова Я. М., Орлов Д.С., Садовникова Л. К. Охрана природы от химического загрязнения. МГУ, 1989. 120 с.
- 8. Бахшиева Ч.Т. Степень токсичности как важный фактор при изучении нефтяного загрязнения почв Апшеронского полуострова //Успехи почвовед, й агрохимии в Азербайджане /Матер, съезда, Новосибирск, авт., 1989. Баку, 1989. С. 43.
- 9. Гилязов М.Ю., Гайсин И.А. Агроэкологическая характеристика и приемы рекультивации нефтезагрязненных черноземов Республики Татарстан. Казань: Фэн, 2003. 228 с.
- 10. Глазовская М.А. Геохимия природных и техногенных ландшафтов. М.: Высшая школа, 1988. 328 с.
- 11. Даутов Р.К., Минибаев В.Г., Фасхутдинова Т.А., Трибрат Т.Г. Изменения свойств почв под влиянием загрязнения нефтью и нефтепромысловыми сточными водами в Татарской АССР // Тез. докл. VI Делегат, съезда ВОП, Тбилиси, 1981. Кн.2. С. 108-109.
- 12. Демиденко А.Я., Демурджан В.М. Пути восстановления нефтезагрязненных почв черноземной зоны Украины. // Восстановление нефтезагрязненных почвенных экосистем. М.: Наука, 1988. С. 197-206.

- 13. Киреева Н.А., Мифтахова А.М., Кузяхметов Г.Г. Влияние загрязнения нефтью на фитотоксичность серой лесной почвы // Агрохимия. 2001b. № 5. С. 64-69.
- 14. Киреева Н.А., Мифтахова А.М., Салахова Г.М. Рост и развитие растений яровой пшеницы на нефтезагрязненных почвах и при биоремедиации // Агрохимия. -2006. № 1. -C. 85-90.
- 15. Орлов Д.С., Садовникова Л.К., Суханова Н.И. Химия почв. Издательство: Высшая школа, 2005 г.
- 16. Пиковский Ю. И Проблема диагностики и нормирования загрязнения почв нефтью и нефтепродуктами / Ю. И. Пиковский, А. Н. Геннадиев, С.С. Чернянский Г. Н. Сахаров // Почвоведение, -№ 9. -2003. –С.1132-1140.
- 17. Постановление Правительства Ханты-мансийского автономного округа Югры от 10 декабря 2004 г. N 466-п «Об утверждении регионального норматива "Допустимое остаточное содержание нефти и нефтепродуктов в почвах после проведения рекультивационных и иных восстановительных работ на территории Ханты-Мансийского автономного округа Югры".
- 18. Славнина Т.П. Влияние загрязнения нефтью и нефтепродуктами на свойства почв// Мелиорация земель Сибири. Красноярск, 1984. С. 73-77.
- 19. Солнцева Н.П. Добыча нефти и геохимия природных ландшафтов, М.: Изд-во МГУ, 1998 г. 376 с.
- 20. Тишкина Е.И. Влияние нефтяного загрязнения на свойства серых лесных почв Предуралья и пути восстановления их плодородия: Автореф. Дисс. Канд. Биол. Наук. Воронеж. 1989. -С. 23.
- 21. Трофимов С.Я., Розанова М.С. Изменение свойств почв под влиянием нефтяного загрязнения. В кн. «Деградация и охрана почв». Изд-во МГУ, 2002, с. 359 373.
- 22. Цулаия А.М. Функционально-морфологические изменения высших растений при действии нефтяного, солевого и нефтесолевого загрязнения почв. Автореферат канд. диссерт. на соиск. уч. ст. к.б.н. Тюмень. 2012. 18 с.
- 23. Ягафарова Г. Г. Утилизация экологически опасных отходов бурения / Г. Г. Ягафарова, В.Б. Барахнина // Нефтегазовое дело. 006. №2. с. 48-61
- 24. Яшвили Н.Н., Берадже М.А. Влияние загрязнения нефти и нефтепродуктами на биологическую активность почв Колхидской низменности // Изв. АН ГССР. Сер. Биол. 1982. Т. 8. № 6. С